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6. A SECOND ROUND 

OF THEORY 
 

§6.1. Groups of Cosets 
 If H is a subgroup of G we have 

a set of right cosets {gH | g  G} 

whose size, if G is finite, is |G|/|H|. It 

would be nice if we could make this set 

into a group, for if we denoted this 

group by G/H we would have, in a 

certain sense, decomposed G into the two groups H and 

G/H. But to do this we’d need to define the product of two 

right cosets. A very natural definition is simply aH.bH = 

abH. But there’s a potential problem of well-definedness. 

If aH = aH and bH = bH it needn’t be that a = a 

and b = b. So we would need to check that, in all cases, 

abH = abH. 

 

Example 1: 

Let G = S3 and let H = {I, (12)}, the cyclic subgroup 

generated by (12). The right cosets here are: 

H = {I, (12)} = (12)H, 

(123)H = {(123), (23)} = (23)H, 

(132)H = {(132), (13)} = (13)H. 

If our multiplication of cosets was valid we’d have the 

contradiction: 

(123)H  (132)H = 1H = H while 
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(23)H  (13)H = (132)H  H. 

What’s wrong isn’t our definition so much as the 

subgroup H itself. If H was the right sort of subgroup this 

multiplication of cosets would have worked perfectly. 

 

§6.2. Normal Subgroups and Quotient 

Groups 
Évariste Galois, in his quest to find a way of 

deciding whether a given polynomial was soluble by 

radicals, invented groups and subgroups and he noticed 

that only certain subgroups were suitable. He called these 

‘normal’ subgroups. 

A subgroup is normal if its left and right cosets are 

the same. Notation: H     G. Clearly every group is normal 

in itself because in that case there is only one left coset 

and only one right coset, namely the whole group in each 

case. Also the identity subgroup {1} is a normal subgroup 

of any group because the left and right cosets all have the 

form {g} for g  G. Some groups have no other normal 

subgroups and for this reason they play a special role in 

group theory, as we’ll see in a later chapter. 

At the other extreme there are groups where every 

subgroup is normal. Clearly these include all the abelian 

groups but, interestingly, there are also certain non-

abelian groups with this property. But usually a non-

abelian group will have some non-normal subgroups. 

 

Example 2: If G = S3 and K = {I, (123), (132)} the left 

cosets of K in G are: 
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But these are also the right cosets of K in G. So the left 

and right cosets of K are the same and hence K is a normal 

subgroup of G. 

 

But for H = {I, (12)} this isn’t so. The left cosets are: 

 

 

while the right cosets are: 

 

 

 A natural way to define multiplication of cosets is: 

aH.bH = abH 

with a similar definition for left cosets. As indicated 

earlier, the problem with this definition is that it depends 

on the choice of representative. Remember that for any b 

 aH we have bH = aH. Any element of the coset can be 

used as the representative. It’s important that our 

definition be well-defined, that is, the answer shouldn’t 

depend on our choice of representative. Only for normal 

subgroups does this work. 

 

Theorem 1: If H    G then multiplication of right cosets 

is well-defined. 

Proof: Suppose H    G and suppose aH = aH and 

I  (123) (132) (12)  (13)  (23) 

I  (12) (123)  (23) (132)  (13) 

I  (12) (123)  (13) (132)  (23) 
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bH = bH. 

Then a = ah and b = bk for some h, k  H. 

Thus ab = ahbk.  Now hb  Hb = bH (this is where the 

normality of H comes in) so hb = bh for some h  H. 

Thus ab = ahbk = abhk  abH and so abH = abH. ☺ 

 

 It isn’t difficult to check that if H isn’t a normal 

subgroup of G then coset multiplication is not well-

defined and so we don’t have a quotient group. Normal 

subgroups are precisely those subgroups for which the 

multiplication of cosets works. 

 

If H is a normal subgroup of G, the corresponding 

quotient group G/H is the set of (left or right) cosets with 

aH.bH defined to be abH. The following are easily 

checked. 

 

Theorem 2: 

(1) The identity element of G/H is the coset H itself. 

(2) If G is finite |G/H| = |G|/|H|. 

(3) Every subgroup of an abelian group is normal. 

(4) Every group is a normal subgroup of itself. 

(5) The trivial subgroup is a normal subgroup of any 

group. ☺ 

 

Example 3: Let G = ℤ9
# = {1, 2, 4, 5, 7, 8} under 

multiplication modulo 9 and let H = {1, 8} be the cyclic 

subgroup generated by 8. Since G is abelian, H is a normal 

subgroup of G. 
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The cosets are H = {1, 8}, 2H = {2, 7} and 4H = {4, 5} 

and the group table for G/H is: 

 

 H 2H 4H 

H H 2H 4H 

2H 2H 4H H 

4H 4H H 2H 

 The index of a subgroup H of a group G is the 

number of right cosets. (This will be the same as the 

number of left cosets). If this is finite we denote it by 

|G:H|. If H is normal in G this is the same as |G/H| and if 

G is finite we can write |G:H| as |G|/|H|. 

But you can have subgroups of finite index even in 

infinite groups. For example, under addition, the group of 

integers has a subgroup of index 2, namely the even 

integers.  The two cosets are the even integers and the odd 

integers. The case of index 2 is interesting, especially in 

non-abelian groups, as the next theorem shows. 

 

Theorem 3: Subgroups of index 2 are always normal. 

Proof: A subgroup of index 2 is one that has two left 

cosets and two right cosets. But since one left coset is the 

subgroup itself the other must be the complement. The 

same is true for the right cosets and so left cosets and right 

cosets are identical. ☺ 

 

Theorem 4: For all n, An is a normal subgroup of Sn. 

Proof: For n  2 An has index 2 in Sn. For n = 1 An = Sn. 
☺ 
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Theorem 5: A subgroup H of G is normal if and only if 

g−1hg  H for all g  G, h  H. 

Proof: Hg = gH if and only if g−1Hg = H. ☺ 

 

Theorem 6: The order of gH in G/H divides the order of 

g in G. 

Proof: If n = |g| then gn = 1 and so (gH)n = gnH = H. ☺ 

 

Example 4: Let G be the following group of order 8 and 

let H = {1, 3}. 

 1 2 3 4 5 6 7 8 

1 1 2 3 4 5 6 7 8 

2 2 3 4 1 6 7 8 5 

3 3 4 1 2 7 8 5 6 

4 4 1 2 3 8 5 6 7 

5 5 8 7 6 3 2 1 4 

6 6 5 8 7 4 3 2 1 

7 7 6 5 8 1 4 3 2 

8 8 7 6 5 2 1 4 3 

The cosets are 

1   3 2  4 5   7 6   8 

and the group table for G/H is: 

 H 2H 5H 6H 

H H 2H 5H 6H 

2H 2H H 6H 5H 

5H 5H 6H H 2H 

6H 6H 5H 2H H 



 287 

For example 5H.2H = 8H = 6H. We multiply the 

representatives in the original group, and then look to see 

which coset it is in. We must not write the product as 8H, 

even though this is correct, because in a group table every 

element in the body of the table must be written exactly 

as it is at the top and the left-hand side. 

 Usually we save space by just writing down the 

representatives. This is OK so long as we remember that 

5 here represents 5H = {5, 7} and not just the single 

element 5. So in the above example we could write: 

  

G/H 1 2 5 6 

1 1 2 5 6 

2 2 1 6 5 

5 5 6 1 2 

6 6 5 2 1 

 

§6.3. Homomorphisms 
 Abstract algebra studies algebraic systems, but not 

in isolation. Just as important as the structures themselves 

are functions between them, though not just any old 

function. The ones of interest are those that interact nicely 

with the algebraic operations. These are called 

‘homomorphisms’. In linear algebra, for example, the 

homomorphisms are called ‘linear transformations’. 

For groups, having just one operation of 

multiplication, we require homomorphisms to take 

products to products. But to state the definition in its 
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greatest generality we must be conscious of the fact that 

the operations in the two groups may be different. 

 A map f: (G, ) →(H, •) is a homomorphism if 

f(x  y) = f(x) • f(y) for all x, y  G. 

If the operations of both groups are written 

multiplicatively this simplifies to 

f(xy) = f(x) f(y). 

But if both are written additively this would appear as 

f(x + y) = f(x) + f(y). 

Other variations are 

f(x + y) = f(x) f(y) and 

f(xy) = f(x) + f(y). 

 

 This last version may remind you of the property of 

logarithms – the log of a product is the sum of the logs. In 

fact the logarithm function is indeed a homomorphism. 

 

Example 5: Let G = (ℝ+, ) be the group of positive real 

numbers under multiplication and H = (ℝ, +), the group 

of all real numbers under addition. Then f(x) = log(x) is a 

homomorphism from G to H. 

   

 There’s a whole family of ‘morphisms’ all with 

Latin names. If you have a good knowledge of Latin you 

might be able to guess their definitions. The basic one is 

the homomorphism, meaning something like ‘similar 

shape’. The others are endomorphisms, epimorphisms, 

isomorphisms, monomorphisms and automorphisms. 
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A homomorphism f: G→ H is: 

an epimorphism if it is onto; 

a monomorphism if it is 1-1; 

an isomorphism if it is both 1-1 and onto; 

an endomorphism if H = G; 

an automorphism if it is 1-1 and onto and H = G. 

 

So in example 5, f(x) is an isomorphism from G to H. 

 

Example 6: 

(1) If G is the group: 

 1 2 3 4 

1 1 2 3 4 

2 2 1 4 3 

3 3 4 1 2 

4 4 3 2 1 

the function f: G→ ℝ# defined by f(1) = f(2) = 1 and f(3) 

= f(4) = −1 is a homomorphism. 

 

(2) For all groups G, H the map f: G→H defined by 

f(x) = 1 is a homomorphism. It’s called the trivial 

homomorphism. 

 

(3) If H  G the map f: H→G defined by f(x) = x is a 

monomorphism, called the identity homomorphism. 

 

(4)  f: GL(n, ℝ)→ ℝ# defined by f(A) = |A| (determinant 

of A) is an epimorphism. 
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(5) The exponential function f: ℝ → ℝ+ defined by 

 f(x) = ex is an isomorphism since 

ex+y = ex.ey. 

It is the inverse of the log function. 

 

(6) The conjugation map f: ℂ → ℂ defined by f(z) =z is 

an automorphism. 

 

(7) For any group G the map f: G → G defined by 

 f(x) = x is an automorphism. 

 

(8) If H is a normal subgroup of G then f: G → G/H 

defined by f(x) = xH is an epimorphism. 

 

(9) If g  G the map f: G→G defined by f(x) = g−1xg is an 

automorphism. 

 

Theorem 7: If f: G→H is a homomorphism then 

(1) f(1) = 1 

(2) f(an) = f(a)n for all a  G and all n  ℤ. 

(3) |f(a)| divides |a| for all a  G. ☺ 

 

 The significance of an isomorphism is that it relates 

two groups that are group-theoretically the same. They 

may look quite different. They may use different notation 

and involve quite different operations. But if there’s an 

isomorphism between them they’re structurally 

equivalent, or as we say, isomorphic. Isomorphic groups 
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have the same group-theoretic properties. They differ 

only in notation. 

 

If there exists an isomorphism f: G → H we say that G is 

isomorphic to H. Notation: G  H. 

 

Theorem 8: Isomorphism is an equivalence relation. 

Proof: Reflexive: The identity map is an isomorphism. 

Symmetric: The inverse of isomorphism is an 

isomorphism. 

Transitive: The product of two isomorphisms is an 

isomorphism. ☺ 

 

§6.4. Isomorphism Theorems 
 Associated with any homomorphism are two very 

important subgroups, the kernel and the image. The 

kernel is a subgroup (in fact a normal subgroup) of the 

group being mapped out of and the image is a subgroup 

of the group being mapped into. 

 If  f:G→H is a homomorphism, the kernel of f is 

the set of elements which map to the identity.  That is, 

ker(f) = {g  G | f(g) = 1}. 

The image is im(f) = {f(g) | g  G}. [Recall that for 

a linear transformation between vector spaces the kernel 

is the set of vectors that map to the zero vector, this being 

the identity element of the additive part of the vector 

space.] 
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Example 7: 

If f: ℝ# → ℝ# is defined by f(x) = x2 then ker(f) = {1} and 

im(f) = ℝ+ = {x  ℝ | x > 0}. 

 

1st ISOMORPHISM THEOREM 

Theorem 9: If f:G→H is a homomorphism and K = ker(f) 

then 

 (1) K    G ; 

 (2) im(f)  H ; 

 (3) G/K  im(f). 

Proof: 

(1) Let a, b  K.  Then f(a) = f(b) = 1 and so f(ab) = 1 and 

f(a−1) = 1. Thus ker(f)  G. 

      If k  K and g  G then f(g−1kg) = f(g)−1f(k)f(g) 

                                                           = f(g)−1f(g) = 1. 

Thus ker(f) is a normal subgroup of G. 

 

(2) Let f(a), f(b)  im(f). 

Then f(b)−1f(a) = f(b−1a)  im(f) and f(a)−1 = f(a−1)  im(f). 

 

(3) Define :G/K → im(f) by (gK) = f(g). Since (gK) 

is defined in terms of a representative of the coset we must 

first check that this is well-defined, that is, if aK = bK 

then (aK) = (bK). 

Suppose aK = bK.  Then b−1a  K.  Hence f(b−1a) = 1 and 

so f(b)−1f(a) = 1 and so f(a) = f(b). 

The reverse calculation checks that  is 1-1. For if (aK) 

= (bK) then f(a) = f(b) and so f(b−1a) = 1. 
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Thus b−1a  K and so aK = bK. 

Finally, it’s clear that  is onto. Hence  is an 

isomorphism and so G/K  im. ☺ 

 

 If H, K are subgroups of a group G there are three 

important ways in which we could combine them: 

H  K, H  K and HK. 

You already know what the first two are. 

We define HK = {hk | h  H, k  K}. 

Are these subgroups? The following can be easily shown: 

 

 Is it a subgroup? 

H  K never (unless one is a subset of the other) 

HK sometimes 

H  K always 

 

 I have left it as an exercise to prove the statements 

about H  K and H  K. We will soon explore situations 

when HK is a subgroup. But because the union of two 

subgroups is virtually never a subgroup it has no 

significance in group theory. 

 

 The following are easily shown and are left as 

exercises. 

neither H, K normal H  K is a subgroup 

one of H, K normal H  K is a subgroup but may not 

be normal 

both H, K normal H  K is a normal subgroup 
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 We will now show the following: 

neither H, K normal HK may not be a subgroup 

one of H, K normal HK is a subgroup 

both H, K normal HK is a normal subgroup 

 

Example 8: HK may not be a subgroup: Let G = S3 and 

let H = {I, (12)} and K = {I, (13)}. Then, since (12)(13) 

= (123), HK = {I, (12), (13), (123)}. This has 4 elements 

and G has 6. Since 4 does not divide 6 HK can’t be a 

subgroup of G. Indeed (123)(123) = (132) so HK is not 

closed. 

 

Theorem 10: If H, K are subgroups of G and at least one 

of them is a normal subgroup of G then HK is a subgroup 

of G. 

Proof: Suppose that K is normal in G. 

Let h1, h2  H and k1, k2  K. 

Then (h1k1)(h2k2) = h1h2(h2
−1k1h2)k2. 

Since h1h2  H and h2
−1k1h2  K, by normality and 

(h2
−1k1h2)k2  K by closure, the above product is in HK. 

Clearly 1 = 1.1  HK. 

Let h  H and k  K. 

Then (hk)−1 = k−1h−1 = h−1(hk−1h−1)  HK. 

If H is a normal subgroup then a similar proof shows that 

HK is a subgroup of G. ☺ 
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Theorem 11: If both H and K are normal subgroups of G 

then HK is a normal subgroup of G. 

Proof: By the above theorem we only need to check 

normality. 

Let h  H, k  K and g  G. 

Then g−1(hk)g = (g−1hg)(g−1kg)  HK. ☺ 
 

2nd ISOMORPHISM THEOREM 

Theorem 12: If H and K are normal subgroups of G then: 

 (1) H  K is a normal subgroup of G; 

 (2) HK is a normal subgroup of G; 

 (3) HK/K  H/(H  K). 

Proof: The map h → hK is a homomorphism with kernel 

H  K and image HK. 

Now use the First Isomorphism Theorem. ☺ 

 

3rd ISOMORPHISM THEOREM 

Theorem 13: If H  K  G with both H, K being normal 

in G then: 

 (1) K/H  G/H; 

 (2) (G/H)/(K/H)  G/K. 

Proof: The map gH → gK is a well-defined (why?) 

homomorphism with kernel K/H and image G/K.  Now 

use the First Isomorphism Theorem. ☺ 

 

Examples 9: 

(1) f: ℂ → ℝ where f(x + iy) = y. 

This is a homomorphism with ker(f) = im(f) = ℝ. 

Hence ℂ/ℝ  ℝ. 
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(2) G = GL(n, ℝ) is the set of n  n invertible real 

matrices, f: G→ ℝ# where f(A) = |A|. 

      K = SL(n, ℝ) is the set of those matrices with 

determinant 1, 

      H = set of diagonal matrices in G, 

       L = set of scalar matrices in G. 

 ker(f) = K and im(f) = ℝ#  since for all x  ℝ#, the 

determinant of the diagonal matrix 

diag(x, 1, 1, ...) is x.  Hence G/K  ℝ#. 

H  K is the set of matrices of form 






a  0

0 a−1   and HK = G 

(because every invertible matrix can be transformed to a 

diagonal matrix using elementary matrices with 

determinant 1.) 

Hence, by the 2nd and 3rd Isomorphism Theorems, 

H/(H  K)  G/K  ℝ# and (G/L)/(K/L)  G/K ℝ#. 

 

§6.5. Conjugacy Classes 
 The conjugate of x by g is defined to be 

xg = g−1xg. 

The exponential notation is justified by the following 

properties of conjugation, which are analogous to powers. 

(1) xgh = (xg)h 

(2) (xy)g = xg yg 

But note that gg = g for all g, something which has no 

counterpart for powers. 
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Example 10: In D8 = A, B | A4, B2, BA = A−1B the 

conjugate of A by B is 

B−1AB = BAB 

            = A−1BB 

            = A−1 

                 = A3. 

 The relation ‘is a conjugate of” is an equivalence 

relation and the equivalence classes are called conjugacy 

classes. 

 

Example 11: The conjugacy classes of D8 are: 

{1}, {A, A3}, {A2}, {B, BA2}, {BA, BA3}. 

 

 The centraliser of g in G = {x  G | gx = xg}. It’s 

easy to check that it’s a subgroup of G, though, as the next 

example shows, it needn’t be a normal subgroup. 

Notation: CG(g) or just C(g). 

 

Example 12: 

The centraliser of (12)(34) in S4 = {I, (12), (34), (1324), 

(1423), (12)(34), (13)(24), (14)(23)} 

 

 The centre of G is Z(G)={x | g [xg = gx]}. It’s 

the intersection of all the centralisers of the elements of G 

and is therefore subgroup. But in fact, as is easily seen, 

it’s a normal subgroup of G. 

 

Example 13: Z(D8) = {1, A2}. 
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Note that g  Z(G) if and only if {g} is a conjugacy class, 

of size 1. 

 The class equation of a finite group G is: 

|G| = h1 + h2 + ... + hk 

where 1 = h1  h2  ... are the sizes of the conjugacy 

classes. The number of hi which equal 1 is |Z(G)|. 

 

Example 14: The class equation for ℤ4 is: 

4 = 1 + 1 + 1 + 1. 

 

Example 15: The class equation for S3 is: 

6 = 1 + 2 + 3 

since the conjugacy classes are: 

{I}, {(123), (132)}, {(12), (13), (23)}. 

 

Example 16: The class equation for S4 is: 

24 = 1 + 3 + 6 + 6 + 8 

since the conjugacy classes correspond to the cycle 

structures. There are 6 permutations with cycle structure 

(), 6 with cycle structure (), 8 with cycle structure 

() and 3 with cycle structure ()(). 

 

 The next example shows how important counting 

is in finite group theory. In this case, the fact that normal 

subgroups are made up of entire conjugacy classes can 

help us find normal subgroups. 
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Example 17: Suppose H  S4 with |H| = 12. 

Since |S4:H| = 2, H is normal and so must be made up of 

complete conjugacy classes. One of them must consist of 

the identity so we have to be able add some of the 

numbers 3, 6, 6 and 8 to get 11. Clearly 3 + 8 is the only 

possibility. So H must contain all the elements with cycle 

structures I, ()(), and () in which case H = A4. 

Hence A4 is the only subgroup of order 12 in S4. 

 

Theorem 14: The number of conjugates of x in G is: 

the index of its centraliser in G . 

Proof: xg = xh if and only if xgh−1
 = x if and only if 

gh−1  CG(x) if and only if gCG(x) = hCG(x). So f(xg) = 

gCG(x) is a well-defined 1-1 and onto map between the 

conjugacy class of x and the set of right cosets of the 

centraliser CG(x). ☺ 
 

#conjugates of x in G = 
|G|

|CG(x)
 . 

 

Example 18: The class equation for A4 is: 

12 = 1 + 3 + 4 + 4. 

The conjugacy classes for S4 that contain elements of A4 

are I, ()() and () with sizes 1, 3 and 8 

respectively. But the class containing all the 3-cycles 

splits into two conjugacy classes within A4. 

To see this, consider the centralizer of one of these 

3-cycles such as (123). Since there are 8 conjugates in S4 
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there must be 24/8 = 3 elements in its centralizer. Clearly 

these must be I, (123) and (132). 

These are all in A4 so in A4 the centralizer has order 

3. The number of conjugates must therefore be 12/3 = 4. 

So if each 3-cycle has only 4 conjugates in A4 the 8 3-

cycles must form 2 conjugacy classes of size 4 in S4. 

How can this be? Well, if you conjugate (123) by 

only the even permutations you only get 4 conjugates. To 

get across to the other 4 you need to conjugate by an odd 

permutation. 

 

Example 19: Find the numbers of conjugates of (123) and 

(12345) in A5. 

Proof: Doing this by actually finding the conjugacy class 

is a lot of work, but the above theorem can help. The 

number of conjugates of (123) in S5 is the number of 

permutations in S5 with cycle structure (), which is 

20. The order of S5 is 120, so by the above theorem 

|CS5(123)| = 120/20 = 6. 

 Now it’s clear that these 6 elements that commute 

with (123) are its 3 powers and its 3 powers times (45). 

How many of these are in A5? Only the first 3. So 

|CA5(123)| = 3 and so the number of conjugates of (123) 

in A5 is 60/3 = 20. This time the conjugacy class doesn’t 

split when we consider conjugates in A5.  

 In the case of (12345), there are 24 conjugates in S5 

and so |CS5(12345)| = 120/24 = 5.  These 5 elements that 

commute with (12345) are clearly its 5 powers, all of 
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which are in A5. So |CA5(12345)| = 5 and so the number 

of conjugates of (12345) in A5 is 60/5 = 12. 

 So the conjugacy class containing all the 3-cycles 

in S5 remains a single class in A5 but the conjugacy class 

of size 24 containing all the 5-cycles in S5 splits into two 

classes of size 12 when we’re considering classes in A5. 

In the latter case you’d need to conjugate by an odd 

permutation to take you from one lot of 12 to the other. 

 

Theorem 15: If G/Z(G) is cyclic then G is abelian (and 

so G = Z(G)). 

Proof: Suppose G/Z(G) is generated by gZ(G). Then 

every element of G/Z(G) has the form (gZ(G))r = grZ(G) 

and so every element of G has the form grz for some 

integer r and some z  Z(G). 

Since gru commutes with gsv for all integers r, s and all u, 

v  Z(G), it follows that G is abelian. ☺ 

 

 If p is prime, a finite p-group is a group of order 

pn for some n. Whenever we say that a group is a p-group 

we are assuming that p is prime. 

 

Example 20: The dihedral group of order 8 is a p-group 

for p = 2. 

 

Theorem 16: The centre of a non-trivial finite p-group 

G is non-trivial. 

Proof: Suppose that Z(G) = 1. Then G has only one 

conjugacy class of size 1. All the others must be proper 
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powers of p, and hence multiples of p. Thus the sum of 

the sizes of the conjugacy classes would be of the form kp 

+ 1 yet |G| is a multiple of p, contradicting the class 

equation. In fact |Z(G)|   p. ☺ 

 

Theorem 17: Groups of order p2 (where p is prime) are 

abelian. 

Proof: Suppose |G| = p2 where p is prime. Since Z(G) is 

non-trivial, |Z(G)| = p or p2. Thus |G/Z(G)| = p or 1 and so 

is cyclic. Hence, by Theorem 15, G is abelian. ☺ 

 

Theorem 18: A finite p-group G has a subgroup of every 

order that divides |G|. 

Proof: Let |G| = pn and let 1  r  n. We prove the result 

by induction on n. It is clearly true if n = 1 so suppose that 

n  2. Let r  n. 

 Since Z(G) > 1 there is an element z  Z(G) of 

order p. Let H = z then H  G. 

By induction G/H has a subgroup of order pr−1 and so G 

has a subgroup of order pr. ☺ 

 

 In fact all finite groups have at least one subgroup 

of every prime power order that divides the order of the 

group, as we will see later. 
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§ 6.6. Commutators 
 In an abelian group G, ab = ba for all a, b  G. 

Now the equation ab = ba can be 

written as a−1b−1ab = 1. In a non-

abelian group, on the other hand, 

not all the elements of the form 

a−1b−1ab are equal to the identity.  

They generate an important non-

trivial subgroup. 

 

 A commutator in a group is an element of the form 

a−1b−1ab. We denote such an element by [a, b]. So a, b 

commute if and only if [a, b] = 1. 

 

Theorem 19: The following properties hold for 

commutators: 

(1) [b, a] = [a, b]−1. 

(2) g−1[a, b]g = [g−1ag, g−1bg]. 

Proof: (1) [b, a] = b−1a−1ba 

                          = (a−1b−1ab)−1 

                                         = [a, b]−1. 

(2) g−1[a, b]g = g−1a−1b−1abg 

                     = g−1a−1gg−1b−1gg−1agg−1bg 

                     = (g−1ag)−1(g−1bg)−1(g−1ag)(g−1bg) 

                     = [g−1ag, g−1bg]. ☺ 

 

Example 21: If a = (123) and b = (1423) are permutations 

in S4 then: 
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[a, b] = (123)−1(1423)−1(123)(1423) 

          = (132)(1324)(123)(1423) 

          = (243). 

 

§ 6.7. The Derived Subgroup 
 So the inverse of a commutator is a commutator 

and a conjugate of a commutator is a commutator. We’re 

well on the way to proving that the commutators form a 

normal subgroup except that the product of two 

commutators needn’t be a commutator. So, instead of 

considering the set of all commutators we consider the 

group generated by all the commutators – that is, we 

consider all products of commutators. Now indeed we do 

have a normal subgroup. 

 The derived subgroup (commutator subgroup) 

of a group G is the subgroup G generated by the 

commutators. Clearly it’s a normal subgroup of G. It is 

also obvious that G is abelian if and only if G = 1, so in 

a certain sense G (or perhaps its size) measures how close 

the group is to being abelian. 

 

Example 22: S3 = A3. 

 It might appear that we must compute all 36 

commutators [a, b] where a, b  S3, which would be a lot 

of work. But after computing just the one commutator 

[(12), (13)] = (12)(13)(12)(13) = (132) we conclude that 

G must contain (132), and hence all its powers.  Thus far 

we obtain {I, (132), (123)}, which is A3, the group of even 

permutations. Could there be any more? No, because 
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clearly in groups of permutations all commutators are 

even permutations. 

 We get all the 3 even permutations and we certainly 

can’t get any odd ones. So the question is settled with a 

minimum of computation. In finding the derived 

subgroup we almost never have to compute the 

commutators themselves. Usually we use the following 

theorem. 

 

Theorem 20: (1) G/G is abelian. 

                      (2) If G/H is abelian then G   H. 

Proof: (1) Let aG, bG be two elements of G/G. 

Then [aG, bG] = (aG)−1(bG)−1(aG)(bG) 

                            = a−1b−1abG 

                            = [a, b]G 

                            = G since [a, b]  G. 

(2) Suppose G/H is abelian. 

 Then for all a, b  G, [aH, bH] = H (the identity 

element of G/H). 

 Thus [a, b]H = H so [a, b]  H. 

 Hence H contains all the commutators, and being a 

subgroup, it contains all products of commutators. 

 Hence G lies inside H. ☺ 

 

 A simple way of stating the above theorem is to say 

that: 

The derived subgroup is the smallest normal 

subgroup for which the quotient is abelian. 
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 Example 23: I’ll show that S4 = A4. By the parity 

argument of example 2 we easily see that S4  A4. This 

can also be deduced from the above theorem and the fact 

that S4/A4 is abelian (after all it has order 2, 2 is prime, 

groups of prime order are cyclic, and cyclic groups are 

abelian). But why can’t S4 be smaller? 

 

 Suppose S4 was smaller than A4. Then |S4| would 

have to properly divide 12. The possibilities are 1, 2, 3, 4 

and 6. Now we know that the sizes of the conjugacy 

classes in S4 are 1, 3, 6, 6 and 8 (these are the numbers of 

elements of each cycle structure – remember that two 

permutations are conjugate in Sn if and only if they have 

the same cycle structure). And a normal subgroup, such 

as G, must be made up of entire conjugacy classes. The 

only possibility would be for G to have order 4 and be 

made up of the classes of sizes 1 and 3. 

 So why can’t G have order 4? Because then G/G 

would have order 6. And what’s wrong with that? Well 

groups of order 6 (twice a prime) are cyclic group or 

dihedral. But G/G is abelian so it isn’t dihedral. And why 

can’t G/G  be the cyclic group of order 6? Why then it 

would have to have elements of order 6 and yet S4 doesn’t 

contain any such permutations. So by patient detective 

work we get a contradiction to the assumption that S4 is 

smaller than A4. It follows therefore that S4 is equal to 

A4. 
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EXERCISES FOR CHAPTER 6 
 

EXERCISE 1: Let G be the following group: 

 1 2 3 4 5 6 7 8 

1 1 2 3 4 5 6 7 8 

2 2 1 4 3 7 8 5 6 

3 3 4 2 1 6 7 8 5 

4 4 3 1 2 8 5 6 7 

5 5 7 8 6 2 3 1 4 

6 6 8 5 7 4 2 3 1 

7 7 5 6 8 1 4 2 3 

8 8 6 7 5 3 1 4 2 

 

(a) Find the elements of H, the cyclic subgroup 

generated by 2. 

(b) Write down the left and right cosets of H and show 

that H is a normal subgroup of G. 

(c) Representing each coset of H by one of its elements 

(say the smallest) write out the group table for G/H. 

(d) Find Z(G). 

(e) Explain why G/H is not cyclic. 

(f) Show that G = Z(G). 

(g) Show that every subgroup of G is a normal subgroup. 

(h) Find all the subgroups of G. 
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EXERCISE 2: G is a group with the following group 

table:  

 1 2 3 4 5 6 

1 1 2 3 4 5 6 

2 2 1 6 5 4 3 

3 3 4 5 6 1 2 

4 4 3 2 1 6 5 

5 5 6 1 2 3 4 

6 6 5 4 3 2 1 

 

Which of the following functions from G to G are 

homomorphisms? 

 

x 1 2 3 4 5 6 

a(x) 2 3 4 5 6 1 

b(x) 1 2 1 2 1 2 

c(x) 1 3 1 5 1 3 

d(x) 1 2 3 4 5 6 

e(x) 1 6 5 4 3 2 

f(x) 1 4 5 6 3 2 

g(x) 1 1 1 2 3 4 

h(x) 1 1 1 1 1 1 

 

EXERCISE 3: Let ℝ+ denote the group of positive real 

numbers under multiplication, let ℝ denote the group of 

all real numbers under addition and let H = {1}. 

Use the fact that f: ℝ+ → ℝ defined by f(x) = log(x) is a 

homomorphism to show that 

ℝ#/H  ℝ. 
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EXERCISE 4: Prove that GL(n, ℝ)/SL(n, ℝ)  ℝ#. 

[HINT: Think of a homomorphism from GL(n, ℝ) to ℝ#.] 

 

EXERCISE 5: Prove that if f(x) = x−1 is an automorphism 

from a group G to itself then G is abelian. 

 

EXERCISE 6: G is a non-abelian group of order 27.  

Find |Z(G)|. 

 

EXERCISE 7: Show that H  K is never a subgroup of 

a group G unless one of H, K is inside the other. 

 

EXERCISE 8: Prove that if H, K are subgroups of G then 

so is H  K. 

 

EXERCISE 9: Prove that if H, K are normal subgroups 

of G then so is H  K. 
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SOLUTIONS FOR CHAPTER 6 
 

EXERCISE 1: (a) H = {1, 2}. 

(b) The left cosets are: H = {1, 2}, 3H = {3, 4}, 5H = {5, 

7}, 6H = {6, 8}.  These are also the right cosets.  Since 

the left and right cosets are the same H is normal in G. 

(c) 

 1 3 5 6 

1 1 3 5 6 

3 3 1 6 5 

5 5 6 1 3 

6 6 5 3 1 

(d) Z(G) = H = {1, 2}. 

(e) From (d) we can see that every non-trivial element of 

G/H has order 2 so G/H has no element of order 4.  

Alternatively we could appeal to the theorem that for a 

non-abelian group G/Z(G) can never be cyclic. 

(f) G/H is abelian so G  H.  But G  1 since G is non-

abelian.  Hence G = H = Z(G). 

(g) We need to systematically find all the subgroups of G. 

By Lagrange’s Theorem the possible orders of subgroups 

are 1, 2, 4 and 8 and there’s only one subgroup, {1} of 

order 1 and only one of order 8, the group G itself.  Both 

of these are clearly normal. 

 Subgroups of order 2 are cyclic, generated by an 

element of order 2.  Looking down the diagonal of the 

group table for G we see that the only candidate is 2.  As 

we’ve seen, this generates H and this is a normal 

subgroup.  This leaves subgroups of order 4.  Since these 
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are of index 2, and subgroups of index 2 are normal, these 

subgroups are normal. 

(h) It remains to find the subgroups of order 4.  Now there 

are only two types of group of order 4 – the cyclic group 

of order 4 and the group known as V4, or C2  C2 with 3 

elements of order 4.  Since G only has one element of 

order 2 there can’t be any of the latter type.  So the 

subgroups of order 4 are cyclic, generated by an element 

of order 4.  There are 6 elements of order 4 but, as pairs 

of these generate a single cyclic subgroup there are just 3 

subgroups of order 3: {1, 2, 3, 4}, {1, 2, 5, 7} and {1, 2, 

6, 8}. 

 The subgroups of G are thus: 

G = {1, 2, 3, 4, 5, 6, 7, 8}, A = {1, 2, 3, 4}, 

B = {1, 2, 5, 7}, C = {1, 2, 6, 8}, Z = {1, 2} and the trivial 

subgroup {1} that we always denote by the symbol 1. 

 We can draw a picture of these, known as a lattice 

of subgroups, as follows: 

 

 

 

 

 

 

 

G 

A B C 

Z 

1 
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EXERCISE 2: 

a(x) is a NOT a homomorphism since the identity is not 

fixed. 

 

b(x) is a homomorphism.  Even permutations map to 1 

and odd permutations map to 2. 

 

c(x) is NOT a homomorphism. 

If it was then ker(c) = {1, 3, 5} and so  G/ker(c)  would 

have order 2. 

But G/ker(c)  im(c)  and  im(c)  has order 3. 

 

d(x) is a homomorphism. 

It’s the identity automorphism. 

 

e(x) is a homomorphism.  We can see this by taking the 

group table for G, replacing each element by its image 

under e.  We then rearrange the rows and columns and 

check that we get back to the original group table. 

 

 1 2 3 4 5 6   1 6 5 4 3 2 

1 1 2 3 4 5 6  1 1 6 5 6 3 2 

2 2 1 6 5 4 3  6 6 1 2 3 4 5 

3 3 4 5 6 1 2  5 5 4 3 2 1 6 

4 4 3 2 1 6 5  4 4 5 4 1 2 3 

5 5 6 1 2 3 4  3 3 2 1 6 5 4 

6 6 5 4 3 2 1  2 2 3 4 5 6 1 

 

 



 313 

 

 1 2 3 4 5 6   1 2 3 4 5 6 

1 1 2 3 6 5 6  1 1 2 3 6 5 6 

6 6 5 4 3 2 1  2 2 1 6 5 4 3 

5 5 6 1 2 3 4  3 3 4 5 6 1 2 

4 4 3 2 1 4 5  4 4 3 2 1 4 5 

3 3 4 5 6 1 2  5 5 6 1 2 3 4 

2 2 1 6 5 4 3  6 6 5 4 3 2 1 

 

f(x) is NOT a homomorphism. 

For example f(2  3) = f(6) = 2 while f(2).f(3) = 4.5 = 6. 

 

g(x) is NOT a homomorphism since im(g) has order 4 and 

so cannot be a subgroup of G. 

 

h(x) is a homomorphism.  It’s the trivial homomorphism. 

  

EXERCISE 3: ker(f) = {1} = H so, by the First 

Isomorphism Theorem, ℝ#/H  ℝ. 

 

EXERCISE 4: The map f:GL(n, ℝ) → ℝ# defined by f(A) 

= |A| is a homomorphism.  Its kernel is SL(n, ℝ) and its 

image is ℝ#.  Hence, by the First Isomorphism Theorem, 

GL(n, ℝ)/SL(n, ℝ)  ℝ#. 

 

EXERCISE 5: Let x, y  G.  Then (xy)−1 = x−1y−1.  But 

(xy)−1 = y−1x−1 so x−1y−1 = y−1x−1.  This equation can be 

rearranged to give xy = yx.  So every pair of elements 

commute and so G is abelian. 
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EXERCISE 6: By Lagrange’s Theorem, |Z(G)| = 1, 3, 9 

or 27. 

Since G is non-abelian, |Z(G)|  27.  Since G is a p-group 

(for p = 3), |Z(G)| > 1. 

Since G/Z(G) is not cyclic, |Z(G)|  9.  Hence |Z(G)| = 3. 

 

EXERCISE 7: Suppose neither of these subgroups lies 

inside the other and that H  K is a subgroup of G. 

Choose g  H so that g  K and h  K so that h  H. 

Then, since both g, h belong to H  K, so does gh. Thus 

gh  H or gh  K. If gh  H then h = g−1(gh)  H, a 

contradiction. 

Similarly, if gh  K we get a contradiction. 

 

EXERCISE 8: Let a, b  H  K. Since a, b  H we have 

ab  H. Similarly ab  K, so ab  H  K. 

Clearly 1  H, K. And a−1 is in both H, K so it belongs to 

H  K. 

 

EXERCISE 9: By exercise 8 we only need to check 

normality. Let h  H  K and g  G. Then since h  H, 

g−1hg  H. Similarly g−1hg  K, so it belongs to H  K. 

 


