6. ASECOND ROUND
OF THEORY

86.1. Groups of Cosets
If H is a subgroup of G we have
a set of right cosets {gH | g € G}

whose size, if G is finite, is |G|/|H|. It
would be nice if we could make this set ) ®
into a group, for if we denoted this \‘

group by G/H we would have, in a
certain sense, decomposed G into the two groups H and
G/H. But to do this we’d need to define the product of two
right cosets. A very natural definition is simply aH.bH =
abH. But there’s a potential problem of well-definedness.
If aH = a’H and bH = b'H it needn’t be that a = a’
and b =b’. So we would need to check that, in all cases,
abH =a’'b'H.

Example 1:
Let G = Sz and let H = {l, (12)}, the cyclic subgroup
generated by (12). The right cosets here are:
H={l, (12)} = (12)H,

(123)H = {(123), (23)} = (23)H,

(132)H = {(132), (13)} = (13)H.
If our multiplication of cosets was valid we’d have the
contradiction:

(123)H x (132)H = 1H = H while
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(23)H x (13)H = (132)H = H.
What’s wrong isn’t our definition so much as the
subgroup H itself. If H was the right sort of subgroup this
multiplication of cosets would have worked perfectly.

§6.2. Normal Subgroups and Quotient

Groups

Evariste Galois, in his quest to find a way of
deciding whether a given polynomial was soluble by
radicals, invented groups and subgroups and he noticed
that only certain subgroups were suitable. He called these
‘normal’ subgroups.

A subgroup is normal if its left and right cosets are
the same. Notation: H <G. Clearly every group is normal
in itself because in that case there is only one left coset
and only one right coset, namely the whole group in each
case. Also the identity subgroup {1} is a normal subgroup
of any group because the left and right cosets all have the
form {g} for g € G. Some groups have no other normal
subgroups and for this reason they play a special role in
group theory, as we’ll see in a later chapter.

At the other extreme there are groups where every
subgroup is normal. Clearly these include all the abelian
groups but, interestingly, there are also certain non-
abelian groups with this property. But usually a non-
abelian group will have some non-normal subgroups.

Example 2: If G = Sz and K = {l, (123), (132)} the left
cosets of K in G are:
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| (123) (132) | (12) (13) (23)

But these are also the right cosets of K in G. So the left
and right cosets of K are the same and hence K is a normal
subgroup of G.

But for H = {I, (12)} this isn’t so. The left cosets are:

| (12) [(123) (23)](132) (13)

while the right cosets are:

| (12) [(123) (13)](132) (23)

A natural way to define multiplication of cosets is:
aH.bH = abH

with a similar definition for left cosets. As indicated
earlier, the problem with this definition is that it depends
on the choice of representative. Remember that for any b
e aH we have bH = aH. Any element of the coset can be
used as the representative. It’s important that our
definition be well-defined, that is, the answer shouldn’t
depend on our choice of representative. Only for normal
subgroups does this work.

Theorem 1: If H < G then multiplication of right cosets
is well-defined.

Proof: Suppose H <G and suppose aH = a’H and
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bH = Db'H.

Then a’ = ah and b’ = bk for some h, k € H.

Thus a’b’ = ahbk. Now hb € Hb = bH (this is where the
normality of H comes in) so hb = bh’ for some h' € H.
Thus a’b’ = ahbk = abh’k € abH and so a’b’H = abH. ©%

It isn’t difficult to check that if H isn’t a normal
subgroup of G then coset multiplication is not well-
defined and so we don’t have a quotient group. Normal
subgroups are precisely those subgroups for which the
multiplication of cosets works.

If H is a normal subgroup of G, the corresponding
guotient group G/H is the set of (left or right) cosets with
aH.bH defined to be abH. The following are easily
checked.

Theorem 2:

(1) The identity element of G/H is the coset H itself.

(2) If G is finite |G/H| = |G|/|H].

(3) Every subgroup of an abelian group is normal.

(4) Every group is a normal subgroup of itself.

(5) The trivial subgroup is a normal subgroup of any
group. ©

Example 3: Let G = Z¢* = {1, 2, 4, 5, 7, 8} under
multiplication modulo 9 and let H = {1, 8} be the cyclic
subgroup generated by 8. Since G is abelian, H is a normal
subgroup of G.
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The cosets are H = {1, 8}, 2H = {2, 7} and 4H = {4, 5}
and the group table for G/H is:

H 2H 4H

H H 2H 4H
2H| 2H 4H H
AH| 4H H 2H

The index of a subgroup H of a group G is the
number of right cosets. (This will be the same as the
number of left cosets). If this is finite we denote it by
|G:H]|. If H is normal in G this is the same as |G/H| and if
G is finite we can write |G:H| as |G|/|H|.

But you can have subgroups of finite index even in
infinite groups. For example, under addition, the group of
integers has a subgroup of index 2, namely the even
integers. The two cosets are the even integers and the odd
integers. The case of index 2 is interesting, especially in
non-abelian groups, as the next theorem shows.

Theorem 3: Subgroups of index 2 are always normal.
Proof: A subgroup of index 2 is one that has two left
cosets and two right cosets. But since one left coset is the
subgroup itself the other must be the complement. The
same is true for the right cosets and so left cosets and right
cosets are identical. ©%

Theorem 4: For all n, A, is a normal subgroup of S,.
Proof: Forn>2 A hasindex2in S,. Forn=1 A, =S,.
O©Y
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Theorem 5: A subgroup H of G is normal if and only if
gthgeHforallge G, heH.
Proof: Hg =gH ifand only if g*Hg = H. ©%

Theorem 6: The order of gH in G/H divides the order of
ginG.
Proof: If n=|g|theng"=1and so (gH)"=g"H =H. ©%

Example 4: Let G be the following group of order 8 and
let H = {1, 3}.
1

~No ok W
N0 B (WIN|(F-

N[OOI (B WINN
O[O (NN, WlW
QIO (N[O WIN ||~
NP~ lW(o(N[o|o1|o1
Rl WwNOIo(N[O| O
A(WINFRPOO|OT(00 NN
WIN[FP|IA~[([N|O|01|00 |00

8| 8
The cosets are

1 3|24 |5 7|6 8
and the group table for G/H is:

H 2H 5H 6H
H{H |[2H|5H | 6H
2H|2H| H | 6H | 5H
S5H|5H|6H| H | 2H
6H|6H |5H |2H | H
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For example 5H.2H = 8H = 6H. We multiply the
representatives in the original group, and then look to see
which coset it is in. We must not write the product as 8H,
even though this is correct, because in a group table every
element in the body of the table must be written exactly
as it is at the top and the left-hand side.

Usually we save space by just writing down the
representatives. This is OK so long as we remember that
5 here represents 5H = {5, 7} and not just the single
element 5. So in the above example we could write:

GH 1 2 56
1[1]2]5]|6
212]1]|6]5
5|5(6]1]2
6|16(5/2]|1

86.3. Homomorphisms

Abstract algebra studies algebraic systems, but not
in isolation. Just as important as the structures themselves
are functions between them, though not just any old
function. The ones of interest are those that interact nicely
with the algebraic operations. These are called
‘homomorphisms’. In linear algebra, for example, the
homomorphisms are called ‘linear transformations’.

For groups, having just one operation of
multiplication, we require homomorphisms to take
products to products. But to state the definition in its
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greatest generality we must be conscious of the fact that
the operations in the two groups may be different.
A map f: (G, *) ->(H, ) is a homomorphism if
f(x = y) =f(x) o f(y) forall x, y € G.
If the operations of both groups are written
multiplicatively this simplifies to
f(xy) = f(x) f(y).

But if both are written additively this would appear as

f(x +y) =1(x) +1(y).
Other variations are

f(x +y) = f(x) f(y) and

f(xy) = f(x) + f(y).

This last version may remind you of the property of
logarithms — the log of a product is the sum of the logs. In
fact the logarithm function is indeed a homomorphism.

Example 5: Let G = (R", x) be the group of positive real
numbers under multiplication and H = (R, +), the group
of all real numbers under addition. Then f(x) = log(x) is a
homomorphism from G to H.

There’s a whole family of ‘morphisms’ all with
Latin names. If you have a good knowledge of Latin you
might be able to guess their definitions. The basic one is
the homomorphism, meaning something like ‘similar
shape’. The others are endomorphisms, epimorphisms,
isomorphisms, monomorphisms and automorphisms.
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A homomorphism f: G— H is:
an epimorphism if it is onto;
a monomorphism if it is 1-1;
an isomorphism if it is both 1-1 and onto;
an endomorphism if H = G;
an automorphism if itis 1-1 and onto and H = G.

So in example 5, f(x) is an isomorphism from G to H.

Example 6:
(1) If G is the group:

WN -
WIN |-
AN
Rl lw]lw

RINWAP>

41 4 3 2
the function f: G— R* defined by f(1) = f(2) = 1 and f(3)
=f(4) = -1 is a homomorphism.

(2) For all groups G, H the map f: G—>H defined by
f(x) = 1 is a homomorphism. It’s called the trivial
homomorphism.

(3) If H < G the map f: H>G defined by f(x) = x is a
monomorphism, called the identity homomorphism.

(4) f: GL(n, R)— R* defined by f(A) = |A| (determinant
of A) is an epimorphism,
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(5) The exponential function f: R — R* defined by
f(x) = e*is an isomorphism since

Xt =eXeV,
It is the inverse of the log function.

(6) The conjugation map f: C — C defined by f(z) = z is
an automorphism.

(7) For any group G the map f: G — G defined by
f(x) = x is an automorphism.

(8) If H is a normal subgroup of G then f: G —» G/H
defined by f(x) = xH is an epimorphism.

(9) If g € G the map f: G—G defined by f(x) = g~txg is an
automorphism.

Theorem 7: If f: G—H is a homomorphism then
D f(1)=1
(2)f(@") =f(a)"foralla e Gand all n € Z.
(3) [f(a)| divides |a| foralla € G. ©

The significance of an isomorphism is that it relates
two groups that are group-theoretically the same. They
may look quite different. They may use different notation
and involve quite different operations. But if there’s an
isomorphism  between them they’re structurally
equivalent, or as we say, isomorphic. Isomorphic groups
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have the same group-theoretic properties. They differ
only in notation.

If there exists an isomorphism f: G — H we say that G is
isomorphic to H. Notation: G = H.

Theorem 8: Isomorphism is an equivalence relation.
Proof: Reflexive: The identity map is an isomorphism.
Symmetric: The inverse of isomorphism is an
isomorphism.

Transitive: The product of two isomorphisms is an
isomorphism. ©%

86.4. Isomorphism Theorems

Associated with any homomorphism are two very
important subgroups, the kernel and the image. The
kernel is a subgroup (in fact a normal subgroup) of the
group being mapped out of and the image is a subgroup
of the group being mapped into.

If f:G—H is a homomorphism, the kernel of f is
the set of elements which map to the identity. That is,
ker(f) = {g € G|f(g) = 1}.

The image is im(f) = {f(g) | g € G}. [Recall that for
a linear transformation between vector spaces the kernel
Is the set of vectors that map to the zero vector, this being
the identity element of the additive part of the vector
space.]
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Example 7:
If f: R* - R*is defined by f(x) = x2 then ker(f) = {+1} and
im(f) = R* = {x € R | x> 0}.

1st ISOMORPHISM THEOREM
Theorem 9: If f:G—H is a homomorphism and K = ker(f)
then

(1)KL G;

(2) im(f)<H;

(3) G/K = im(f).
Proof:
(1) Leta, b € K. Then f(a) =f(b) = 1 and so f(ab) = 1 and
f(a™?) = 1. Thus ker(f) < G.

If k e Kand g e G then f(g~tkg) = f(g)*f(k)f(g)
= f(9)™f(g) = 1.

Thus ker(f) is a normal subgroup of G.

(2) Let f(a), f(b)  im(P).
Then f(b)Y(a) = f(b*a) e im(f) and f(a)* = f(a) e im(f).

(3) Define @:G/K — im(f) by ®(gK) = f(g). Since ®(gK)
is defined in terms of a representative of the coset we must
first check that this is well-defined, that is, if aK = bK
then ®(aK) = ®(bK).

Suppose aK = bK. Then b™a e K. Hence f(b™a) = 1 and
so f(b)*f(a) = 1 and so f(a) = f(b).

The reverse calculation checks that @ is 1-1. For if ®(aK)
= @ (bK) then f(a) = f(b) and so f(b~ta) = 1.
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Thus ba € K and so aK = bK.
Finally, it’s clear that ® is onto. Hence ® is an
isomorphism and so G/K =im6. ©%

If H, K are subgroups of a group G there are three
Important ways in which we could combine them:
H N K, Hu Kand HK.
You already know what the first two are.
We define HK = {hk | h € H, k € K}.
Are these subgroups? The following can be easily shown:

Is it a subgroup?

H o K | never (unless one is a subset of the other)
HK sometimes

HNK |always

| have left it as an exercise to prove the statements
about H U K and H n K. We will soon explore situations
when HK is a subgroup. But because the union of two
subgroups is virtually never a subgroup it has no
significance in group theory.

The following are easily shown and are left as
eXercises.
neither H, K normal | H n K is a subgroup
one of H, Knormal | H K isa subgroup but may not
be normal
both H, K normal H ~ K'is a normal subgroup
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We will now show the following:

neither H, K normal HK may not be a subgroup
one of H, K normal HK is a subgroup
both H, K normal HK is a normal subgroup

Example 8: HK may not be a subgroup: Let G = Sz and
let H={l, (12)} and K = {l, (13)}. Then, since (12)(13)
= (123), HK = {1, (12), (13), (123)}. This has 4 elements
and G has 6. Since 4 does not divide 6 HK can’t be a
subgroup of G. Indeed (123)(123) = (132) so HK is not
closed.

Theorem 10: If H, K are subgroups of G and at least one
of them is a normal subgroup of G then HK is a subgroup
of G.

Proof: Suppose that K is normal in G.

Let hl, hz e H and kl, kz e K.

Then (hlkl)(hgkz) = hlhz(hz_lklhg)kg.

Since hih, € H and h,tkih, € K, by normality and
(h2'kiho)kz € K by closure, the above product is in HK.
Clearly 1=1.1 € HK.

Leth e Hand k € K.

Then (hk) ™ =k*h™t =h?(hk*h?) e HK.

If H is a normal subgroup then a similar proof shows that
HK is a subgroup of G. ©%
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Theorem 11: If both H and K are normal subgroups of G
then HK is a normal subgroup of G.

Proof: By the above theorem we only need to check
normality.

Lethe H ke Kandg € G.

Then g7(hk)g = (g7thg)(g*kg) € HK. ©%

2nd ISOMORPHISM THEOREM
Theorem 12: If H and K are normal subgroups of G then:
(1) H n K'is a normal subgroup of G;
(2) HK is a normal subgroup of G;
(3) HK/K = H/(H n K).
Proof: The map h — hK is a homomorphism with kernel
H n K and image HK.
Now use the First Isomorphism Theorem. © %

3rd ISOMORPHISM THEOREM
Theorem 13: If H < K < G with both H, K being normal
in G then:

(1) KIH « G/H;

(2) (G/H)/(K/H) = G/K.
Proof: The map gH — gK is a well-defined (why?)
homomorphism with kernel K/H and image G/K. Now
use the First Isomorphism Theorem. ©

Examples 9:

(1) f: C > R where f(x + 1y) = y.

This is a homomorphism with ker(f) = im(f) = R.
Hence C/R = R.
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(2) G = GL(n, R) is the set of n x n invertible real
matrices, f: G— R* where f(A) = |A.

K = SL(n, R) is the set of those matrices with
determinant 1,

H = set of diagonal matrices in G,

L = set of scalar matrices in G.
ker(f) = K and im(f) = R* since for all x € R¥ the
determinant of the diagonal matrix
diag(x, 1, 1, ...) is x. Hence G/K = R*,

0
H m K is the set of matrices of form (8 - j and HK = G

(because every invertible matrix can be transformed to a
diagonal matrix using elementary matrices with
determinant 1.)

Hence, by the 2nd and 3rd Isomorphism Theorems,

H/(H N K) = G/K = R* and (G/L)/(K/L) = G/K= R*.

86.5. Conjugacy Classes

The conjugate of x by g is defined to be

x9 = g7Ixg.

The exponential notation is justified by the following
properties of conjugation, which are analogous to powers.

(1) x&" = (x9)"

(2) (xy)? =x%y?
But note that g9 = g for all g, something which has no
counterpart for powers.
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Example 10: In Dg = (A, B | A% B?, BA = A'B) the
conjugate of A by B is
B-'AB = BAB

= A'BB

= A_l

= A3,

The relation ‘is a conjugate of” is an equivalence

relation and the equivalence classes are called conjugacy
classes.

Example 11: The conjugacy classes of Dg are:
{1}, {A, A3}, {A%}, {B, BA%}, {BA, BA%}.

The centraliser of gin G = {x € G| gx = xg}. It’s
easy to check that it’s a subgroup of G, though, as the next
example shows, it needn’t be a normal subgroup.
Notation: Cgs(g) or just C(g).

Example 12:
The centraliser of (12)(34) in S; = {l, (12), (34), (1324),
(1423), (12)(34), (13)(24), (14)(23)}

The centre of G is Z(G)={x | Vg [xg = gx]}. It’s
the intersection of all the centralisers of the elements of G
and is therefore subgroup. But in fact, as is easily seen,
it’s a normal subgroup of G.

Example 13: Z(Dg) = {1, A%}.
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Note that g € Z(G) if and only if {g} is a conjugacy class,
of size 1.
The class equation of a finite group G is:
|G| =hy+hy+ ... + hg
where 1 = h; < h, < ... are the sizes of the conjugacy
classes. The number of h; which equal 1 is |Z(G)).

Example 14: The class equation for Z, is:
4=1+1+1+1.

Example 15: The class equation for Ss is:
6=1+2+3
since the conjugacy classes are:

{1} {(123), (132)}, {(12), (13), (23)}.

Example 16: The class equation for Sy is:
24=1+3+6+6+8

since the conjugacy classes correspond to the cycle

structures. There are 6 permutations with cycle structure

(xx), 6 with cycle structure (xxx), 8 with cycle structure

(xxxx) and 3 with cycle structure (xx)(xx).

The next example shows how important counting
is in finite group theory. In this case, the fact that normal
subgroups are made up of entire conjugacy classes can
help us find normal subgroups.
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Example 17: Suppose H < S, with |H| = 12.

Since |S4:H| = 2, H is normal and so must be made up of
complete conjugacy classes. One of them must consist of
the identity so we have to be able add some of the
numbers 3, 6, 6 and 8 to get 11. Clearly 3 + 8 is the only
possibility. So H must contain all the elements with cycle
structures I, (xx)(xx), and (xxx) in which case H = A,.
Hence A4 is the only subgroup of order 12 in S,.

Theorem 14: The number of conjugates of x in G is:

the index of its centraliser in G .
Proof: x9 = x" if and only if xgh™ = x if and only if
gh™ e Cg(x) if and only if gCg(x) = hCg(x). So f(x9) =
gCcs(x) is a well-defined 1-1 and onto map between the
conjugacy class of x and the set of right cosets of the
centraliser Cg(x). ©%

(€]

#conjugates of x in G = Co(X)

Example 18: The class equation for A4 is:
12=1+3+4+4,

The conjugacy classes for S, that contain elements of A4
are I, (xx)(xx) and (xxx) with sizes 1, 3 and 8
respectively. But the class containing all the 3-cycles
splits into two conjugacy classes within Aa.

To see this, consider the centralizer of one of these
3-cycles such as (123). Since there are 8 conjugates in S,
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there must be 24/8 = 3 elements in its centralizer. Clearly
these must be 1, (123) and (132).

These are all in A4 so in A4 the centralizer has order
3. The number of conjugates must therefore be 12/3 = 4.
So if each 3-cycle has only 4 conjugates in A, the 8 3-
cycles must form 2 conjugacy classes of size 4 in S,.

How can this be? Well, if you conjugate (123) by
only the even permutations you only get 4 conjugates. To
get across to the other 4 you need to conjugate by an odd
permutation.

Example 19: Find the numbers of conjugates of (123) and
(12345) in As.
Proof: Doing this by actually finding the conjugacy class
is a lot of work, but the above theorem can help. The
number of conjugates of (123) in Ss is the number of
permutations in Ss with cycle structure (xxx), which is
20. The order of Ss is 120, so by the above theorem
|Cs(123)| = 120/20 = 6.

Now it’s clear that these 6 elements that commute
with (123) are its 3 powers and its 3 powers times (45).
How many of these are in As? Only the first 3. So
|Cas(123)| = 3 and so the number of conjugates of (123)
in As is 60/3 = 20. This time the conjugacy class doesn’t
split when we consider conjugates in As.

In the case of (12345), there are 24 conjugates in Ss
and so |Cs;(12345)| = 120/24 = 5. These 5 elements that

commute with (12345) are clearly its 5 powers, all of
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which are in As. So |Cas(12345)| = 5 and so the number

of conjugates of (12345) in As is 60/5 = 12.

So the conjugacy class containing all the 3-cycles
Iin Ss remains a single class in As but the conjugacy class
of size 24 containing all the 5-cycles in Ss splits into two
classes of size 12 when we’re considering classes in As.
In the latter case you’d need to conjugate by an odd
permutation to take you from one lot of 12 to the other.

Theorem 15: If G/Z(G) is cyclic then G is abelian (and
so G = Z(G)).

Proof: Suppose G/Z(G) is generated by gZ(G). Then
every element of G/Z(G) has the form (gZ(G))" = g'Z(G)
and so every element of G has the form g"z for some
integer r and some z € Z(G).

Since g'u commutes with g®v for all integers r, s and all u,
v € Z(G), it follows that G is abelian. ©%

If p is prime, a finite p-group is a group of order
p" for some n. Whenever we say that a group is a p-group
we are assuming that p is prime.

Example 20: The dihedral group of order 8 is a p-group
forp=2.

Theorem 16: The centre of a non-trivial finite p-group
G is non-trivial.

Proof: Suppose that Z(G) = 1. Then G has only one
conjugacy class of size 1. All the others must be proper
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powers of p, and hence multiples of p. Thus the sum of
the sizes of the conjugacy classes would be of the form kp
+ 1 yet |G| is a multiple of p, contradicting the class
equation. In fact |Z(G)| = p. ©%

Theorem 17: Groups of order p? (where p is prime) are
abelian.

Proof: Suppose |G| = p? where p is prime. Since Z(G) is
non-trivial, |Z(G)| = p or p2. Thus |G/Z(G)| = p or 1 and so
is cyclic. Hence, by Theorem 15, G is abelian. ©%

Theorem 18: A finite p-group G has a subgroup of every
order that divides |G|.
Proof: Let |G| = p"and let 1 <r < n. We prove the result
by induction on n. It is clearly true if n = 1 so suppose that
n>2. Letr<n.

Since Z(G) > 1 there is an element z € Z(G) of
order p. Let H=(z) then H <« G.

By induction G/H has a subgroup of order p"* and so G
has a subgroup of order p'. ©%

In fact all finite groups have at least one subgroup

of every prime power order that divides the order of the
group, as we will see later.
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§ 6.6. Commutators

In an abellan group G, ab = ba forall a, b € G.
§ Now the equation ab = ba can be
written as a—*b~ab = 1. In a non-
| abelian group, on the other hand,
not all the elements of the form
A 4 a“tbab are equal to the identity.

commutator  They generate an important non-

trivial subgroup.

A commutator in a group is an element of the form
a“b~tab. We denote such an element by [a, b]. So a, b
commute if and only if [a, b] = 1.

Theorem 19: The following properties hold for
commutators:

(1) [b, a] = [a, b]™
(2) g'[a, b]g = [g7"ag, g *bg].
Proof: (1) [b, a] =btaba
= (a"b~tab)™!
= [a, b] ™.
(2) g '[a, b]g = g™"a b "abg
=g 'a'gg'b'gg"agg by
= (97'ag) (g *bg) *(g*ag)(9'bg)
=[g7'ag, g *hg]. O

Example 21: If a = (123) and b = (1423) are permutations
in S4 then:
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[, b] = (123)1(1423)1(123)(1423)
= (132)(1324)(123)(1423)
= (243).

8§ 6.7. The Derived Subgroup

So the inverse of a commutator is a commutator
and a conjugate of a commutator is a commutator. We’re
well on the way to proving that the commutators form a
normal subgroup except that the product of two
commutators needn’t be a commutator. So, instead of
considering the set of all commutators we consider the
group generated by all the commutators — that is, we
consider all products of commutators. Now indeed we do
have a normal subgroup.

The derived subgroup (commutator subgroup)
of a group G is the subgroup G' generated by the
commutators. Clearly it’s a normal subgroup of G. It is
also obvious that G is abelian if and only if G’ = 1, so in
a certain sense G’ (or perhaps its size) measures how close
the group is to being abelian.

Example 22: S5’ = As.

It might appear that we must compute all 36
commutators [a, b] where a, b € Sz, which would be a lot
of work. But after computing just the one commutator
[(12), (13)] = (12)(13)(12)(13) = (132) we conclude that
G’ must contain (132), and hence all its powers. Thus far
we obtain {l, (132), (123)}, which is As, the group of even
permutations. Could there be any more? No, because
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clearly in groups of permutations all commutators are
even permutations.

We get all the 3 even permutations and we certainly
can’t get any odd ones. So the question is settled with a
minimum of computation. In finding the derived
subgroup we almost never have to compute the
commutators themselves. Usually we use the following
theorem.

Theorem 20: (1) G/G' is abelian.
(2) If G/H is abelian then G’ < H,
Proof: (1) Let aG’, bG' be two elements of G/G’.
Then [aG’, bG'] = (aG")}(bG')(aG")(bG’)
= a'btabG’
= [a, b]G’
=G’'since [a, b] € G'.
(2) Suppose G/H is abelian.
Then for all a, b € G, [aH, bH] = H (the identity
element of G/H).
Thus [a, b]JH =H so [a, b] € H.
Hence H contains all the commutators, and being a
subgroup, it contains all products of commutators.
Hence G’ lies inside H. © 1%

A simple way of stating the above theorem is to say
that:

The derived subgroup is the smallest normal
subgroup for which the quotient is abelian.
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Example 23: I’ll show that S,/ = A4. By the parity
argument of example 2 we easily see that S;' < A4. This
can also be deduced from the above theorem and the fact
that S4/A, is abelian (after all it has order 2, 2 is prime,
groups of prime order are cyclic, and cyclic groups are
abelian). But why can’t S, be smaller?

Suppose S4" was smaller than A4. Then |S4’| would
have to properly divide 12. The possibilities are 1, 2, 3, 4
and 6. Now we know that the sizes of the conjugacy
classes in Sy are 1, 3, 6, 6 and 8 (these are the numbers of
elements of each cycle structure — remember that two
permutations are conjugate in S, if and only if they have
the same cycle structure). And a normal subgroup, such
as G, must be made up of entire conjugacy classes. The
only possibility would be for G’ to have order 4 and be
made up of the classes of sizes 1 and 3.

So why can’t G’ have order 4? Because then G/G’
would have order 6. And what’s wrong with that? Well
groups of order 6 (twice a prime) are cyclic group or
dihedral. But G/G' is abelian so it isn’t dihedral. And why
can’t G/G ' be the cyclic group of order 6? Why then it
would have to have elements of order 6 and yet S, doesn’t
contain any such permutations. So by patient detective
work we get a contradiction to the assumption that S.’ is
smaller than A,. It follows therefore that S4’ is equal to
A..
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EXERCISES FOR CHAPTER 6

EXERCISE 1: Let G be the following group:
1 3 56 7 8

OO |N[W|A[FPININ
IO (N[DH (N FRPWD>

N[OOI, IN|&~W

R[N WoT|N|0 |

NWFk[(A~[N|OT|O)|00

O ~NO O~ WDNPE
(N[O B(WIN|F-
W[ [(N(o|o | |OT
AINN(W(FR (OO0

(a) Find the elements of H, the cyclic subgroup
generated by 2.

(b) Write down the left and right cosets of H and show
that H is a normal subgroup of G.

(c) Representing each coset of H by one of its elements
(say the smallest) write out the group table for G/H.

(d) Find Z(G).

(e) Explain why G/H is not cyclic.

() Show that G’ = Z(G).

(g) Show that every subgroup of G is a normal subgroup.
(h) Find all the subgroups of G.
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EXERCISE 2: G is a group with the following group
table:

OO |IWIN|[F|F
QIO(WIRFLININ
AlRLIMNDOIO(W(W
WIN [k, OO|OT|& D>
NIWIO (L&~ (O1(01
RN WO(OD

OOk WN B

Which of the following functions from G to G are
homomaorphisms?

X 1234506
ax)|2]|3|4|5]|6|1
b(x)|1]2]1]2]|1]|2
c(x)|1/3]1[(5]1]3
dix)|1]2[3|4|5|6
e(x) |1]6(5(4|3|2
f(x) [1]4]5(/6|3|2
gx)|1]1/1/2(3|4
h(x)|1]1]1]1]1]1

EXERCISE 3: Let R* denote the group of positive real
numbers under multiplication, let R denote the group of
all real numbers under addition and let H = {#1}.
Use the fact that f: R* — R defined by f(x) = log(x) is a
homomorphism to show that

R*/H = R.
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EXERCISE 4: Prove that GL(n, R)/SL(n, R) = R*,
[HINT: Think of a homomorphism from GL(n, R) to R¥]

EXERCISE 5: Prove that if f(x) = x* is an automorphism
from a group G to itself then G is abelian.

EXERCISE 6: G is a non-abelian group of order 27.
Find |Z(G)|.

EXERCISE 7: Show that H U K is never a subgroup of
a group G unless one of H, K is inside the other.

EXERCISE 8: Prove that if H, K are subgroups of G then
soisH N K.

EXERCISE 9: Prove that if H, K are normal subgroups
of GthensoisH N K.

309



SOLUTIONS FOR CHAPTER 6

EXERCISE 1: (a) H={1, 2}.

(b) The left cosets are: H = {1, 2}, 3H = {3, 4}, 5H = {5,
7}, 6H = {6, 8}. These are also the right cosets. Since
the left and right cosets are the same H is normal in G.

()

1 3 5 6
111 |3 |5 |6
313 1|1 |6 |5
5|5 16 |1 |3
6|16 |5 [3 |1

(d)z(G)=H={1, 2}.

(e) From (d) we can see that every non-trivial element of
G/H has order 2 so G/H has no element of order 4.
Alternatively we could appeal to the theorem that for a
non-abelian group G/Z(G) can never be cyclic.

(f) G/H is abelian so G’ < H. But G’ # 1 since G is non-
abelian. Hence G’ = H = Z(G).

(g) We need to systematically find all the subgroups of G.
By Lagrange’s Theorem the possible orders of subgroups
are 1, 2, 4 and 8 and there’s only one subgroup, {1} of
order 1 and only one of order 8, the group G itself. Both
of these are clearly normal.

Subgroups of order 2 are cyclic, generated by an
element of order 2. Looking down the diagonal of the
group table for G we see that the only candidate is 2. As
we’ve seen, this generates H and this is a normal
subgroup. This leaves subgroups of order 4. Since these
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are of index 2, and subgroups of index 2 are normal, these
subgroups are normal.

(h) It remains to find the subgroups of order 4. Now there
are only two types of group of order 4 — the cyclic group
of order 4 and the group known as V,, or C, ® C, with 3
elements of order 4. Since G only has one element of
order 2 there can’t be any of the latter type. So the
subgroups of order 4 are cyclic, generated by an element
of order 4. There are 6 elements of order 4 but, as pairs
of these generate a single cyclic subgroup there are just 3
subgroups of order 3: {1, 2, 3, 4}, {1, 2,5, 7} and {1, 2,
6, 8}.

The subgroups of G are thus:
G={1,2,34,56,7,8} A={1,2, 3,4},
B={1,257} C={1,2,6,8} Z={1, 2} and the trivial
subgroup {1} that we always denote by the symbol 1.

We can draw a picture of these, known as a lattice
of subgroups, as follows:

G

N

A BO 0C€
i/

ol
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EXERCISE 2:
a(x) is a NOT a homomorphism since the identity is not
fixed.

b(x) is @ homomorphism. Even permutations map to 1
and odd permutations map to 2.

c(x) is NOT a homomorphism.

If it was then ker(c) = {1, 3, 5} and so G/ker(c) would
have order 2.

But G/ker(c) =z im(c) and im(c) has order 3.

d(x) is a homomorphism.
It’s the identity automorphism.

e(x) is a homomorphism. We can see this by taking the
group table for G, replacing each element by its image
under e. We then rearrange the rows and columns and
check that we get back to the original group table.

1 23456 1654372
111[2]3[4(5|6|] 1[1(6|5|6|3]|2
212|1|6|5]|4|3| 6(6(1]/2|/3|4]|5
3/3[(4|5]|6[1]|2] 5[5]|4|3]|2]|1|6
414|13|2|1]|6]|5| 414]|5]4]|1|2]3
5|5|6]1[2|3|4] 3(|3|2]|1|6|5|4
616/5(4[3]|2]1] 2[2]|3]4[5]6]1
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NWw~OIO|F (|
RP[(AWOHOTININ
DO NP |RWW
QIO (L INWo |~
AR lWINOI[OT
WINOT| B~ FPOO|O
OO (WIN ||
QIO (W FININ
AN |W[(W
WIN [k, OO|OT|O |~
NW(A~(FL(&(OT(O1
R OIINWOH(OD

NW S~ OO -
OOl OWDN B

f(x) is NOT a homomaorphism.
For example f(2 x 3) = f(6) = 2 while f(2).f(3) =4.5 =6.

g(x) is NOT a homomorphism since im(g) has order 4 and
so cannot be a subgroup of G.

h(x) is a homomorphism. It’s the trivial homomorphism.

EXERCISE 3: ker(f) = {£1} = H so, by the First
Isomorphism Theorem, R*/H = R.

EXERCISE 4: The map f:GL(n, R) — R* defined by f(A)
= |A] is a homomorphism. Its kernel is SL(n, R) and its
image is R*. Hence, by the First Isomorphism Theorem,
GL(n, R)/SL(n, R) = R*,

EXERCISE 5: Let X,y € G. Then (xy)* = x?y. But
(xy)?* = yx?t so xy? = yIxt. This equation can be
rearranged to give xy = yx. So every pair of elements
commute and so G is abelian.
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EXERCISE 6: By Lagrange’s Theorem, |Z(G)| =1, 3,9
or 27.

Since G is non-abelian, |Z(G)| # 27. Since G is a p-group
(forp =3), |Z(G)| > 1.

Since G/Z(G) is not cyclic, |Z(G)| # 9. Hence |Z(G)| = 3.

EXERCISE 7: Suppose neither of these subgroups lies
inside the other and that H U K is a subgroup of G.
Choose g € Hso thatg ¢ Kand h € K so that h ¢ H.
Then, since both g, h belong to H U K, so does gh. Thus
gh e Hor gh € K. If gh € H then h = g(gh) € H, a
contradiction.

Similarly, if gh € K we get a contradiction.

EXERCISE 8: Leta,b € Hn K. Since a, b € H we have
ab € H. Similarly ab € K,soab € H n K.

Clearly 1 € H, K. And a™tis in both H, K so it belongs to
HNK.

EXERCISE 9: By exercise 8 we only need to check
normality. Leth €e H~Kand g € G. Then since h € H,
gthg € H. Similarly g~thg € K, so it belongs to H N K.
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